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LElTER TO THE EDITOR 

The failure of a conjectured S4 symmetry in the three-state 
checkerboard Potts model 

I G Enting 
Division of Atmospheric Research, CSIRO, Private Bag No 1, Mordialloc, Victoria 3195, 
Australia 

Received 9 June 1987 

Abstract. Low-temperature expansions are obtained for the three-state Potts model on the 
checkerboard lattice. The four Boltzmann weights were set to various integer multiples of 
a low-temperature variable x. The series were evaluated to order xI9 but it was found that 
the conjectured S, symmetry failed at order xI4 for the zero-field partition function, the 
spontaneous magnetisation and the zero-field susceptibility. 

Several years ago, Jaekel and Maillard ( 1984) noticed that disorder-point solutions 
for a general q-state Potts model on a checkerboard lattice showed an unexpected S ,  
symmetry. In terms of the checkerboard lattice shown in figure 1, four types of 
interaction (denoted a, b, c and d )  occur. The Jaekel-Maillard conjecture is that the 
partition function for the q-state model is invariant under all permutations of a, b, c 
and d. Given the various symmetries (C4v) arising from translational and rotational 
invariance, the question of testing for the full S, symmetry reduces to testing for 
invariance of the partition function under interchanges of a pair of non-parallel 
interactions such as c and d. 

Additional evidence to support the conjectured S ,  symmetry was presented by 
Maillard and Rammal(l985) who gave a large-q expansion and also considered various 
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Figure 1. Interactions on the checkerboard lattice showing the two site types, A, E, and 
the four bond types, a, b, c, d. 
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known special cases of the model. Additional confirmation is given by the disorder- 
point solutions for the Ising model susceptibility given by Dhar and Maillard (1985). 

The q = 3 checkerboard Potts model partition function can be written as the limit 
of a sum over all states of N spin variables T~ which are located at all sites i of the 
lattice and which take the values 0, 1 or 2. Thus 

2 2 
Z N  = . . . c ( a x ) " ~ ( b x ) " h ( c x ) " ~ ( d x ) " ~ p f l S  

r,=0 rN=o 

where nor nbr n,, nd are the number of nearest-neighbour bonds (of types a, b, c, d 
respectively) for which the spin variables at each end of the bond are in different 
states, and n, is the number of spin variables not in state 0. 

The conjecture of Jaekel and Maillard (1984) is that Z ( a ,  b, c, d ; x ,  p )  = 
limN+m Z N ( a ,  b, c, d ; x ,  p)'" is invariant under all permutations of a, b, c and d, not 
only for the q = 3 case considered here but for all q. The present letter describes a 
test that refutes this conjecture. The finite-lattice method of series expansion (see de 
Neef and Enting (1977) and additional references in 0 2 below) is used to construct 
series expansions for Z in powers of x up to x I9 ,  with the p dependence expanded 
in powers of y = 1 - p up to y 2 .  The S ,  symmetry is found to fail at 

The finite-lattice method of series expansion is one of a class of techniques which, 
to paraphrase the words of Wortis (1974), 'substitutes algebraic complexity for com- 
binatorial complexity'. It was first applied to high-temperature expansions for the 
three-state square-lattice Potts model (de Neef and Enting 1977). Further development 
of the method has involved the derivation of general closed-form expressions for the 
powers v(J ,  k) (see (9) below) (Enting 1978a), the generalisation of the method to 
low-temperature series (Enting 1978b) and the construction of finite-lattice partition 
functions by adding one site at a time (Enting 1980a). The method has been applied 
to various Potts model systems (Enting 1980b, c, Enting and Wu 1982, Adler er a1 1983). 

The earlier square-lattice finite-lattice formalism can be readily generalised to 
rectangular-lattice symmetry. Thus series for checkerboard systems could be obtained 
by using a two-site unit cell. However, this approach would not be the most efficient 
in terms of the number of series terms obtained and so a specific generalisation of the 
finite-lattice method to checkerboard systems is desirable. 

The starting point for the finite-lattice method is the existence of a connected-graph 
expansion for the free energy of any finite graph a 

where the irreducible contributions g ( p )  are independent of a and are zero unless p 
is connected. Each incidence factor  CY, p )  is the number of ways p can occur as a 
subgraph of a. 

In the limit, as CY tends to a large uniform regular lattice of N sites, all the weights 
tend to N, so long as configurations of sites and bonds that cannot be transformed 
into one another by translation are regarded as distinct 'graphs'. On non-uniform 
systems such as the checkerboard lattice, the 'graph-equivalence' criterion must also 
include the requirement that the translation maps each interaction onto an equal 
interaction. 

The finite-lattice method classifies graphs according to the smallest rectangle within 
which they can be embedded. On staggered systems with two alternating types of site, 
A and E, these minimal rectangles give a convenient way of classifying each graph, 
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a, as type A or B according to the type of site at the top-left comer of the minimal 
rectangle enclosing a. 

Thus for staggered systems, (2) becomes 

where M (  m, n;A) is the set of all connected graphs that are enclosed by an m x n type 
A rectangle but not by any smaller rectangle. The finite-lattice method truncates (3) as 

where, for a suitable expansion variable 2, S is of order z k  or smaller. 
Assuming the general applicability of (2) we can write 

fAm,+f!L= m ' s m  c n ' s n  c ( n - n . + l ) ( m - m . + l ) (  a r M ( m ' , n ' ; A )  c g ( . ) +  n € M ( m ' , n ' ; B )  c g ( a ) )  ( 5 )  

where f",, f:, are the free energies of m x n rectangles of types A and E respectively. 
While graphs a of the two types A and E contribute unequally to each of f;,, 

f:,, only symmetric combinations contribute to the sumf;, +ft,. Therefore the results 
of Enting (1978a) can be applied to give 

c g ( . ) +  c g ( a )  
a e M ( m , n ; A )  a s M  ( m.n ; B ) 

with 

otherwise. 

Substituting into (4) gives (following Enting (1978a)) 

m + n r 2 k + l  

with 

m +  n = 2 k +  1 

m + n = 2 k  

m + n = 2 k - 1  

m +  n =2k-2.  

v (m,  n )  = (9) 

Enting (1978b) showed that the finite-lattice method would generate low- 
temperature expansions if the fmn were calculated using fixed boundary conditions. 
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In terms of the definition ( l ) ,  the error S in (8) would be of order 
computational purposes it is convenient to take the exponential of (8)  to give 

For 

m + n s 2 k + l  

The Zmn are calculated by using a transfer-matrix approach that builds up the lattice 
of width m one site at a time. It is thus desirable to keep m as small as possible. 

We use the relations 

and 

It is thus possible to write ( 1 0 )  as 

k 2 k i - I - m  u ( m ,  n )  

X 2 ( a ,  b, c, d )  = n n ( Z t . ( a ,  6, c, d ) )  . ( 1 4 6 )  

As noted above, the various finite-lattice partition functions are calculated by building 
up the rectangle one site at a time. This process is described explicitly by Enting 
(19FOa) for the case of generating closed loops on the square lattice. 

In keeping with the product form ( 1 3 )  the test for S ,  symmetry, i.e. comparing 
Z ( a ,  b, c, d )  with Z ( a ,  b, d, c ) ,  was performed by constructing the ratio 

m = l  n = m + l  

= 1 +terms of order x4("l1 (if S4 symmetry holds). ( 1 5 b )  

The field dependence was expressed in terms of y = 1 - p and only the terms involving 
yo, y'  and y 2  were retained. The use of k = 4  meant that the series were obtained 
correct to xI9. As in other finite-lattice series calculations, the possible occurrence of 
large integer coefficients, especially in the intermediate stages, was handled by using 
residue arithmetic. All arithmetic was handled by taking residues modulo primes pi 
with pi = 215 - qi. Also, as noted previously, the tests were performed for fixed integer 
values of a, b, c and d. The series were evaluated for (a ,  b, c, d )  = ( 1 , 2 , 3 , 5 )  modulo 
215 - 19 and the relation ( 1 5 b )  was found to fail at order XI,. 

While the single failure is sufficient to refute the conjecture of an S, symmetry, a 
number of further tests were carried out (successfully) in order to verify the correctness 
of the computer routines. 

(i) The tests with weights ( 1 , 2 , 3 , 5 )  were carried out with the width k successively 
set to 1 ,2 ,3  (at which point the failure was first detected) and 4, in order to check 
that each time k was increased by 1 ,  series terms calculated using smaller values of k 
were given correctly. Since the weights v( m, n )  depend on k (see ( 9 ) )  this check gives 
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quite a strong test of the requirement that the partition functions 2," are being evaluated 
consistently. 

(ii) The program was run with weights (1, 1, 1,l) to ensure that the first two terms 
in the numerator of (150) reproduced the known square-lattice Potts model series 
(Enting 1980b). Various other subproducts in (15a) were checked to ensure that these 
multiplications were being performed correctly. 

(iii) The routines were run with weights (1,1,0,0) for k = 4. As required, only the 
trivial contribution of 1 remained when the numerator of (15a) was evaluated. 
(iv) The routines were run with weights (1, 1, 1,O) for k = 4. As required, the numerator 
reproduced the low-temperature series for the triangular lattice (with a modified field 
variable) as given by Enting (1974). 

The success of the various tests serves to support the correctness of the general 
checkerboard-lattice calculations and the conclusion that the conjectured S ,  symmetry 
fails at order 14 for q = 3. 

After modifying the computer program to perform the same calculations for general 
q, it was found that for q = 4  the S4 symmetry again failed at order 14. For q=2 
(where only even powers of x occur) the series were evaluated to x2' (i.e. k = 6  was 
used). The S ,  symmetry for the susceptibility was found to fail at x2, while the known 
S4 symmetry in the zero-field partition function and spontaneous magnetisation (see 
Maillard and Rammal (1985) and references therein) was of course confirmed. 
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